Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(6): e12336, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337371

RESUMO

Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) is a feature of many solid tumours and is a key pathogenic driver in the inherited condition Tuberous Sclerosis Complex (TSC). Modulation of the tumour microenvironment by extracellular vesicles (EVs) is known to facilitate the development of various cancers. The role of EVs in modulating the tumour microenvironment and their impact on the development of TSC tumours, however, remains unclear. This study, therefore, focuses on the poorly defined contribution of EVs to tumour growth in TSC. We characterised EVs secreted from TSC2-deficient and TSC2-expressing cells and identified a distinct protein cargo in TSC2-deficient EVs, containing an enrichment of proteins thought to be involved in tumour-supporting signalling pathways. We show EVs from TSC2-deficient cells promote cell viability, proliferation and growth factor secretion from recipient fibroblasts within the tumour microenvironment. Rapalogs (mTORC1 inhibitors) are the current therapy for TSC tumours. Here, we demonstrate a previously unknown intercellular therapeutic effect of rapamycin in altering EV cargo and reducing capacity to promote cell proliferation in the tumour microenvironment. Furthermore, EV cargo proteins have the potential for clinical applications as TSC biomarkers, and we reveal three EV-associated proteins that are elevated in plasma from TSC patients compared to healthy donor plasma.


Assuntos
Vesículas Extracelulares , Esclerose Tuberosa , Humanos , Proteínas Supressoras de Tumor , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Vesículas Extracelulares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microambiente Tumoral
2.
J Biol Chem ; 299(1): 102788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509146

RESUMO

Mechanistic target of rapamycin (mTOR) is a protein kinase that integrates multiple inputs to regulate anabolic cellular processes. For example, mTOR complex 1 (mTORC1) has key functions in growth control, autophagy, and metabolism. However, much less is known about the signaling components that act downstream of mTORC1 to regulate cellular morphogenesis. Here, we show that the RNA-binding protein Unkempt, a key regulator of cellular morphogenesis, is a novel substrate of mTORC1. We show that Unkempt phosphorylation is regulated by nutrient levels and growth factors via mTORC1. To analyze Unkempt phosphorylation, we immunoprecipitated Unkempt from cells in the presence or the absence of the mTORC1 inhibitor rapamycin and used mass spectrometry to identify mTORC1-dependent phosphorylated residues. This analysis showed that mTORC1-dependent phosphorylation is concentrated in a serine-rich intrinsically disordered region in the C-terminal half of Unkempt. We also found that Unkempt physically interacts with and is directly phosphorylated by mTORC1 through binding to the regulatory-associated protein of mTOR, Raptor. Furthermore, analysis in the developing brain of mice lacking TSC1 expression showed that phosphorylation of Unkempt is mTORC1 dependent in vivo. Finally, mutation analysis of key serine/threonine residues in the serine-rich region indicates that phosphorylation inhibits the ability of Unkempt to induce a bipolar morphology. Phosphorylation within this serine-rich region thus profoundly affects the ability of Unkempt to regulate cellular morphogenesis. Taken together, our findings reveal a novel molecular link between mTORC1 signaling and cellular morphogenesis.


Assuntos
Proteínas de Transporte , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Morfogênese , Fosforilação , Serina/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Processos de Crescimento Celular , Proteínas de Transporte/metabolismo
3.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551683

RESUMO

Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.

6.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473251

RESUMO

CONTEXT: Depot-specific expansion of orbital adipose tissue (OAT) in Graves orbitopathy (GO; an autoimmune condition producing proptosis, visual impairment and reduced quality of life) is associated with fatty acid (FA)-uptake-driven adipogenesis in preadipocytes/fibroblasts (PFs). OBJECTIVE: This work sought a role for mitochondria in OAT adipogenesis in GO. METHODS: Confluent PFs from healthy OAT (OAT-H), OAT from GO (OAT-GO) and white adipose tissue in culture medium compared with culture medium containing a mixed hormonal cocktail as adipogenic medium (ADM), or culture-medium containing FA-supplementation, oleate:palmitate:linoleate (45:30:25%) with/without different concentration of mitochondrial biosubstrate adenosine 5'-diphosphate/guanosine 5'-diphosphate (ADP/GDP), AICAR (adenosine analogue), or inhibitor oligomycin-A for 17 days. Main outcome measures included oil-red-O staining and foci count of differentiated adipocytes for in vitro adipogenesis, flow cytometry, relative quantitative polymerase chain reaction, MTS-assay/106 cells, total cellular-ATP detection kit, and Seahorse-XFe96-Analyzer for mitochondria and oxidative-phosphorylation (OXPHOS)/glycolysis-ATP production analysis. RESULTS: During early adipogenesis before adipocyte formation (days 0, 4, and7), we observed OAT-specific cellular ATP production via mitochondrial OXPHOS in PFs both from OAT-H and OAT-GO, and substantially disrupted OXPHOS-ATP/glycolysis-ATP production in PFs from OAT-GO, for example, a 40% reduction in OXPHOS-ATP and trend-increased glycolysis-ATP production on days 4 and 7 compared with day 0, which contrasted with the stable levels in OAT-H. FA supplementation in culture-medium triggered adipogenesis in PFs both from OAT-H and OAT-GO, which was substantially enhanced by 1-mM GDP reaching 7% to 18% of ADM adipogenesis. The FA-uptake-driven adipogenesis was diminished by oligomycin-A but unaffected by treatment with ADP or AICAR. Furthermore, we observed a significant positive correlation between FA-uptake-driven adipogenesis by GDP and the ratios of OXPHOS-ATP/glycolysis-ATP through adipogenesis of PFs from OAT-GO. CONCLUSION: Our study confirmed that FA uptake can drive OAT adipogenesis and revealed a fundamental role for mitochondria-OXPHOS in GO development, which provides potential for therapeutic interventions.


Assuntos
Adipogenia/fisiologia , Ácidos Graxos/metabolismo , Oftalmopatia de Graves/metabolismo , Mitocôndrias/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Oftalmopatia de Graves/patologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Órbita , Fosforilação Oxidativa
7.
Sci Rep ; 11(1): 16299, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381067

RESUMO

Correct orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels. Activation of mTOR signaling causes diseases with severe neurological manifestations, such as tuberous sclerosis complex and focal cortical dysplasia. However, the molecular mechanisms by which mTOR signaling regulates nervous system development and function are poorly understood. Unkempt is a conserved zinc finger/RING domain protein that regulates neurogenesis downstream of mTOR signaling in Drosophila. Unkempt also directly interacts with the mTOR complex I component Raptor. Here we describe the generation and characterisation of mice with a conditional knockout of Unkempt (UnkcKO) in the nervous system. Loss of Unkempt reduces Raptor protein levels in the embryonic nervous system but does not affect downstream mTORC1 targets. We also show that nervous system development occurs normally in UnkcKO mice. However, we find that Unkempt is expressed in the adult cerebellum and hippocampus and behavioural analyses show that UnkcKO mice have improved memory formation and cognitive flexibility to re-learn. Further understanding of the role of Unkempt in the nervous system will provide novel mechanistic insight into the role of mTOR signaling in learning and memory.


Assuntos
Cognição/fisiologia , Proteínas de Ligação a DNA/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Dedos de Zinco/fisiologia , Animais , Cerebelo/metabolismo , Drosophila/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Transdução de Sinais/fisiologia
8.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658640

RESUMO

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Assuntos
Biomarcadores Tumorais/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Neoplásica da Expressão Gênica , Neurofibrossarcoma/patologia , Fator de Transcrição STAT3/metabolismo , Adolescente , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurofibrossarcoma/genética , Neurofibrossarcoma/metabolismo , Prognóstico , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32170339

RESUMO

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Morfolinas/farmacologia , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
11.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266331

RESUMO

Depot specific expansion of orbital-adipose-tissue (OAT) in Graves' Orbitopathy (GO) is associated with lipid metabolism signaling defects. We hypothesize that the unique adipocyte biology of OAT facilitates its expansion in GO. A comprehensive comparison of OAT and white-adipose-tissue (WAT) was performed by light/electron-microscopy, lipidomic and transcriptional analysis using ex vivo WAT, healthy OAT (OAT-H) and OAT from GO (OAT-GO). OAT-H/OAT-GO have a single lipid-vacuole and low mitochondrial number. Lower lipolytic activity and smaller adipocytes of OAT-H/OAT-GO, accompanied by similar essential linoleic fatty acid (FA) and (low) FA synthesis to WAT, revealed a hyperplastic OAT expansion through external FA-uptake via abundant SLC27A6 (FA-transporter) expression. Mitochondrial dysfunction of OAT in GO was apparent, as evidenced by the increased mRNA expression of uncoupling protein 1 (UCP1) and mitofusin-2 (MFN2) in OAT-GO compared to OAT-H. Transcriptional profiles of OAT-H revealed high expression of Iroquois homeobox-family (IRX-3&5), and low expression in HOX-family/TBX5 (essential for WAT/BAT (brown-adipose-tissue)/BRITE (BRown-in-whITE) development). We demonstrated unique features of OAT not presented in either WAT or BAT/BRITE. This study reveals that the pathologically enhanced FA-uptake driven hyperplastic expansion of OAT in GO is associated with a depot specific mechanism (the SLC27A6 FA-transporter) and mitochondrial dysfunction. We uncovered that OAT functions as a distinctive fat depot, providing novel insights into adipocyte biology and the pathological development of OAT expansion in GO.


Assuntos
Tecido Adiposo/patologia , Olho/patologia , Oftalmopatia de Graves/patologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Biologia Computacional/métodos , Olho/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Oftalmopatia de Graves/etiologia , Oftalmopatia de Graves/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Transcriptoma
12.
Adv Genet ; 103: 91-118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30904097

RESUMO

Tuberous sclerosis complex (TSC) is a rare, autosomal dominant genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Phenotypically, this leads to aberrant cell growth and the formation of benign tumors called hamartomas in multiple organs. Understanding the mechanisms of pathology that are caused through the presence of disease causing mutations is a real hurdle for many rare genetic disorders; a limiting factor that restricts knowledge of the disease and any hope of a future cure. Through the discovery of the TSC1 and TSC2 genes and the signaling pathways responsible for the pathology of TSC, a new drug target called mechanistic target of rapamycin complex 1 (mTORC1) was discovered. Rapamycin, an mTORC1 inhibitor, is now the only pharmacological therapy approved for the treatment of TSC. This chapter summarizes the success story of TSC and explores the future possibilities of finding a cure.


Assuntos
Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/genética , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Terapia de Alvo Molecular , Mutação , Transdução de Sinais , Sirolimo/uso terapêutico , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
13.
Oncogene ; 38(16): 3102, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622341

RESUMO

This article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.

14.
Cancers (Basel) ; 10(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308940

RESUMO

To find new anti-cancer drug therapies, we wanted to exploit homeostatic vulnerabilities within Tuberous Sclerosis Complex 2 (TSC2)-deficient cells with mechanistic target of rapamycin complex 1 (mTORC1) hyperactivity. We show that nelfinavir and mefloquine synergize to selectively evoke a cytotoxic response in TSC2-deficient cell lines with mTORC1 hyperactivity. We optimize the concentrations of nelfinavir and mefloquine to a clinically viable range that kill cells that lack TSC2, while wild-type cells tolerate treatment. This new clinically viable drug combination causes a significant level of cell death in TSC2-deficient tumor spheroids. Furthermore, no cell recovery was apparent after drug withdrawal, revealing potent cytotoxicity. Transcriptional profiling by RNA sequencing of drug treated TSC2-deficient cells compared to wild-type cells suggested the cytotoxic mechanism of action, involving initial ER stress and an imbalance in energy homeostatic pathways. Further characterization revealed that supplementation with methyl pyruvate alleviated energy stress and reduced the cytotoxic effect, implicating energy deprivation as the trigger of cell death. This work underpins a critical vulnerability with cancer cells with aberrant signaling through the TSC2-mTORC1 pathway that lack flexibility in homeostatic pathways, which could be exploited with combined nelfinavir and mefloquine treatment.

15.
Oncogene ; 37(45): 5913-5925, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29980790

RESUMO

Cancer cells lose homeostatic flexibility because of mutations and dysregulated signaling pathways involved in maintaining homeostasis. Tuberous Sclerosis Complex 1 (TSC1) and TSC2 play a fundamental role in cell homeostasis, where signal transduction through TSC1/TSC2 is often compromised in cancer, leading to aberrant activation of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 hyperactivation increases the basal level of endoplasmic reticulum (ER) stress via an accumulation of unfolded protein, due to heightened de novo protein translation and repression of autophagy. We exploit this intrinsic vulnerability of tumor cells lacking TSC2, by treating with nelvinavir to further enhance ER stress while inhibiting the proteasome with bortezomib to prevent effective protein removal. We show that TSC2-deficient cells are highly dependent on the proteosomal degradation pathway for survival. Combined treatment with nelfinavir and bortezomib at clinically relevant drug concentrations show synergy in selectively killing TSC2-deficient cells with limited toxicity in control cells. This drug combination inhibited tumor formation in xenograft mouse models and patient-derived cell models of TSC and caused tumor spheroid death in 3D culture. Importantly, 3D culture assays differentiated between the cytostatic effects of the mTORC1 inhibitor, rapamycin, and the cytotoxic effects of the nelfinavir/bortezomib combination. Through RNA sequencing, we determined that nelfinavir and bortezomib tip the balance of ER protein homeostasis of the already ER-stressed TSC2-deficient cells in favor of cell death. These findings have clinical relevance in stratified medicine to treat tumors that have compromised signaling through TSC and are inflexible in their capacity to restore ER homeostasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias/patologia , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nelfinavir/farmacologia , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancers (Basel) ; 10(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848950

RESUMO

This special issue on mammalian target of rapamycin (mTOR) explores the importance of mTOR in cell growth control and cancer. Cancer cells often exploit mTOR as a mechanism to enhance their capacity to grow. While protein synthesis is by far the best-characterized mTOR-driven process, this special issue also describes a wider array of mTOR-driven biological processes that cancer cells benefit from, including autophagy, cell cycle control, metabolic transformation, angiogenic signaling, and anabolic processes such as nucleotide biosynthesis and ribosomal biogenesis. Other areas of mTOR signaling covered in these reviews delve into cell migration, inflammation, and regulation of transcription factors linked to cancer progression.

17.
Int J Mol Sci ; 19(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547541

RESUMO

Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell's capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.


Assuntos
Autofagia , Crescimento Celular , Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese Peptídica , Animais , Metabolismo Energético , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Ribossomos/metabolismo
18.
Cancers (Basel) ; 10(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301334

RESUMO

Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell growth by enhancing the efficiency of protein translation. Research in the last decade has revealed that mTOR's role in promoting cell growth is much more multifaceted. While mTOR is necessary for normal human physiology, cancer cells take advantage of mTOR signalling to drive their neoplastic growth and progression. Oncogenic signal transduction through mTOR is a common occurrence in cancer, leading to metabolic transformation, enhanced proliferative drive and increased metastatic potential through neovascularisation. This review focuses on the downstream mTOR-regulated processes that are implicated in the "hallmarks" of cancer with focus on mTOR's involvement in proliferative signalling, metabolic reprogramming, angiogenesis and metastasis.

19.
Essays Biochem ; 61(6): 699-710, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233879

RESUMO

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) at lysosomes plays a pivotal role in cell growth control where an array of large multiprotein complexes relay nutrient, energy, and growth signal inputs through mTORC1. In cancer cells, such regulation often becomes disconnected, leading to uncontrolled cell growth and an elevation in cellular stress. Consequently, cancer cells often lose homeostatic balance as they grow in unfavorable conditions, i.e. when nutrients and energy are limited yet mTORC1 is still aberrantly activated. Cancer cells lose signaling flexibility because of hyperactive mTORC1 that leads to heightened cellular stress and loss of nutrient and energy homeostasis, all of which are potential avenues for cancer therapy. Cancer cells often enhance mTORC1 to drive cell growth and proliferation, while also maintaining their survival. Autophagy regulation by mTORC1 is critically involved in nutrient and energy homeostasis, cell growth control, and survival. Studying mTORC1 and autophagy as a potential therapeutic target for cancer treatment has been the focus of a wide range of research over the past few decades. This review will explore the signaling pathways central to mTORC1 and autophagy regulation, and cancer vulnerabilities while considering anticancer therapies.


Assuntos
Autofagia/fisiologia , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Estresse do Retículo Endoplasmático/genética , Homeostase/genética , Homeostase/fisiologia , Humanos , Neoplasias/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética
20.
Oncotarget ; 8(30): 48711-48724, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28415776

RESUMO

Uncontrolled cell growth in Tuberous Sclerosis Complex occurs due to inappropriate activation of mechanistic (mammalian) target of rapamycin complex 1 (mTORC1). The current therapy, rapamycin, produced promising clinical trial results, but patient tumours regrow if treatment is discontinued, revealing rapamycin has cytostatic properties rather than a cytotoxic effect. Taking advantage of the enhanced levels of endoplasmic reticulum (ER) stress present in TSC2-null cells, we investigated drug combinations producing a cytotoxic response. We found a nelfinavir and salinomycin combination specifically killed TSC2-deficient, mTORC1 hyperactive cells. Cytotoxicity was rescued by reducing protein synthesis, either through mTORC1 inhibition or cycloheximide treatment. This indicates that the drug combination targets the cells by tipping the protein homeostasis balance of the already metabolically stressed TSC2-deficient cells in favour of cell death. Furthermore, this drug combination also inhibited tumour formation in TSC2-deficient cell models and caused tumour spheroid death in 3D culture. Importantly, the 3D assay could differentiate the cytostatic agent, rapamycin, from the cytotoxic nelfinavir/salinomycin combination. Sporadic cancer cell lines with hyperactive mTORC1 signalling were also susceptible to this nelfinavir/salinomycin drug combination. This work indicates that the protein homeostasis pathway is an attractive therapeutic target in both Tuberous Sclerosis Complex and mTORC1-driven sporadic cancers.


Assuntos
Homeostase/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nelfinavir/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Piranos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Quimioterapia Combinada , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...